Quantcast
Channel: EDN - Sensors News
Viewing all articles
Browse latest Browse all 99

Disclosing the results of a webcam closeup

$
0
0

Remember 2020? Global pandemic lockdown forced many of us out of our cubicles and into haphazard home offices, frantically outfitted and upgraded for their new tasks. Retailer inventories of webcams (and associated green screens), ring lights, microphones, headsets, broadband networking equipment and the like quickly evaporated, boosting the prices of whatever remaining equipment stock scraps were left to stratospheric levels. And both existing and new suppliers, sensing a highly profitable business opportunity, rushed to market with products based on whatever (sometimes subpar) system building blocks they could source.

Four years later, COVID-19 is still with us, of course, but many of us have returned to the cubicles (at least part-time, and sometimes reluctantly). But regardless, we’re now fully gear-equipped at all possible work locations. The electronics supply-vs-demand curve has therefore regained sanity, leading to no-longer-crazy prices. And longstanding webcam (for example) suppliers are differentiating their products, hoping to escape profit-killing commoditization: BenQ with the easily relocatable, macro-capable ideaCam S1 Plus and Pro, for example:

Logitech’s Brio line with a focus (pun intended) on high res and other image enhancements:

And Razer’s Kiyo integrating illumination:

Back to commodities. As I’ve mentioned before, I regularly donate computers, both ones that I’ve personally used and outgrown and others hand-built specifically for this purpose, to a local charity for subsequent handoff to its income- and otherwise-challenged clients. I always make sure that the computers include full online communications capabilities—a microphone, speakers, and a webcam, to be precise—for virtual job interviews, online advanced education classes and the like. With laptops this is easy, since such gear is already built in. For desktop computers, on the other hand, I need to source this stuff separately.

Back in February (as well as several times before, apparently), the Avaya Huddle HC010 Webcam was on sale at bargains site Meh, in this case for $14.99 each. At the time, it was reportedly selling for $60.99 at Amazon (it’s now $39.99 there as I write these words two-plus months later), so I quickly “fished” the three-unit limit (two will eventually end up with charity-donation computers; the third is being dissected here just for you). And longer-term historical data is even more revealing. Back in mid-2021 when the pandemic was still raging and the product was just-introduced, Amazon had it marked at $129 per price-tracking site CamelCamelCamel.

The specs are average and passable:

  • 1080p and 720p resolution options, along with a 30 fps frame rate
  • A/V output: H.264 over USB 2.0
  • Digital (i.e., software-interpolated, and Windows-only) pan, tilt and 4x zoom
  • 85° horizontal field of view
  • Two integrated microphones
  • Built-in privacy cover
  • Integrated activity light
  • Dimensions of 4.65″ (L) x 1.46″ (W) x 1.22″ (H)
  • Weight of 3.28 oz
  • 1/2.8″ CMOS image sensor
  • 8mm focal length

although low-light performance is generally dubious-at-best with such cost-centric products. Here’s a promo video with more details:

And here’s our victim, beginning with the obligatory outer box shots:

Note, to my earlier “suppliers sensing a highly profitable business opportunity” comment, the mid-February 2021 manufacturing date:

Now let’s take a peek inside:

A desiccant packet and two slivers of literature:

Along with (cue striptease music)…

Our patient, as-usual accompanied by a 0.75″ (19.1 mm) diameter U.S. penny for size comparison purposes:

Here’s what it looks like from the front. Note the microphone ports to either side of the currently protected cover/lens, and the currently extinguished activity light above the penny:

Remove the protective sliver of plastic in the center and you can see the privacy cover, marked red to alert you when it’s in place:

versus slid away to reveal the lens behind it:

with both positions controlled by a topside switch:

Here’s the rear (I made a rhyme! I’m easily amused!):

And here’s the bottom, first revealing the ¼” thread tripod base built into the lower segment of the two-piece hinged “foot”:

Unfold the two halves of the “foot” and more product info appears, courtesy of another label (augmenting the already shown one attached to the product packaging):

There’s actually another hinge, this one connecting the “foot” to the main body and convenient for when you need to tilt the webcam down post-mount to more effectively frame the user:

And speak of “mount”, it occurred to me post-disassembly of the Avaya HC010 that some of you might not already be familiar with standalone webcams (versus those built into laptop display bezels) and therefore how they’re mounted to displays. Here’s my woefully dusty Logitech Brio perched on top of my Dell UP2516D two-LCD suite; the HC010 operates similarly:

Onward. The front panel pops off easily:

The translucent rubber piece shown at left in the prior photo fell out as I was pulling the panel off. I put it back in place for the following photo (stay tuned for its function):

We now have our first unobstructed perspective of the insides, once again in both privacy cover-active and-inactive modes:

Note the (inexpensive) electret condenser mics on either side, along with the “hole” into which the other end of the recently mentioned translucent rubber piece fits. The piece’s function, as it turns out, is to act as a sort of “light pipe”, transferring the illumination coming from an embedded-in-hole LED, presumably attached to a PCB-to-be-seen-fully-later, to the front panel.

See, too, those four screws, one in each corner? To proceed further, I first tried removing them:

which didn’t get me anywhere meaningful:

The five additional inner screws, on the other hand…

The aforementioned two-piece “foot” also detached as a result:

Now let’s see if we can get the inside assembly to move:

That’s encouraging:

All that’s left is to detach the USB cable’s power-and-data connector to the PCB:

And out it goes!

with the gasket around each mic coming off in the process:

Here’s a standalone front view of the inner assembly, with most of the PCB still obscured by the black plastic frame:

Top view:

Bottom:

And finally, the now-visible backside:

Four more screws to remove:

And the black plastic frame comes right off. Inside:

Already-seen outside:

And now free-and-clear PCB:

Next, let’s detach those mics:

Note, too, the previously embedded-in-hole LED in the upper left corner of the USB connector:

Bottom-side view:

Top:

Left:

Right:

And now let’s flip the PCB back over and peel off the heat sink you likely already noticed earlier:

The dominant-size square IC now revealed at right has markings too faint to discern in a photo, so you’ll have to take my word that it’s the SSC33x Camera SoC Processor from a company called SigmaStar. The smaller chip in its upper left corner (the one with the dab of blue paint on top of it) is a GigaDevice GD25Q64CSIG 64 Mbit SPI NOR flash memory, presumably containing the system firmware. And in the middle, you probably already noticed two more screw heads:

I’m betting that removing them will enable detach of the lens assembly on the other side of the PCB. Let’s see if I’m right:

Yep, we have liftoff:

Here’s the now-exposed other end of the lens:

And here’s the image sensor!

That wraps it up for today, folks. As always, I welcome your thoughts in the comments!

Brian Dipert is the Editor-in-Chief of the Edge AI and Vision Alliance, and a Senior Analyst at BDTI and Editor-in-Chief of InsideDSP, the company’s online newsletter.

Related Content

The post Disclosing the results of a webcam closeup appeared first on EDN.


Viewing all articles
Browse latest Browse all 99

Trending Articles